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LETTER TO THE EDITOR 
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Abstract. In this paper, we present a cluster algorithm for the simqlation of hard spheres 
and related systems. In this algorithm, a copy of the configuration is rotated with respect to a 
randomly chosen pivot point. The two systems me then superposed, and clusters of overlapping 
spheres in the joint system are isolated. Each of these clusters c m  be ‘Ripped’ independently. 
a process which generates non-local moves in the original configuration. A generalization of 
this algorithm (which works perfectly well at small density) can be made to work successfully 
at densities around the solid-liquid transition point in the two-dimensional hard-sphere system. 

Since the 1987 paper by Swendsen and Wang [I] (and the subsequent paper of Wolff [2]), the 
simulation of king or XY-type systems close to the critical point has been much simplified 
just as for the physical system, convenrional Monte Carlo algorithms (for a review cf [3]) 
suffer from critical slowing down, but the new algorithms overcome this problem and allow 
the calculation of thermodynamic quantities with great ease. 

One of the long-standing problems in classical statistical physics is the hard-sphere 
liquid [4]. In two dimensions, the transition between the liquid and the solid order in the 
hard-sphere liquid has been the subject of unabating interest [51. There are several competing 
theoretical scenarios for the transition, and Monte Carlo work has been going on for more 
than 30 years [6] (for a review cf [7]). However, the conventional local-move Monte 
Carlo simulations are greatly affected by the slowing down of the simulation around the 
transition. At present, the maximum size of the simulation box, which can be unequivocally 
thermalized, contains only of the order of 1000 particles [SI. Much larger simulations have 
been undertaken [9, 101 and sophisticated data analysis has been performed [IO]. However, 
due to the fact that the probability distribution has not yet converged to its equilibrium 
value, these simulations are biased in a way which is very difficult to assess. 

In this paper, we present a cluster algorithm, which is applicable to the hard sphere 
system in any dimension, and which is easily generalized to incorporate an additional 
potential. The main idea of the algorithm is to rotate a copy of the ‘current’ configuration, 
and to superpose this rotated copy with the original simulation box. Clusters are then isolrited 
in the joinr system. Each of the clusters is then flipped independently, i.e. the spheres 
belonging to a cluster are moved from the rotated copy into the original configuration and 
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Figure 1. m e  algorithm presented in this papr perfom non-local moves (0) + (e) by 
considering a randomly rotated copy (b)  of the actual configuration (a). ( a )  and ( b )  are 
superposed (c).  and clusten are isolated ( c )  and Ripped ( d )  in the superposed configuration. 

vice versa. For concreteness, consider figure I ,  which illustrates the algorithm: the original 
configuration CI (figure I @ ) )  is made up of N spheres of radius r in a box of size ( L z ,  L y )  (in 
the figure N = 9). In addition to the original configuration, we consider also a configuration 
c~ (displayed in figure l(b)), which is obtained from cI by a n-rotation: we generate cz 
by picking an arbitrary ‘pivot’ point p = ( p x ,  p!) with 0 c px < L,, 0 c pr < L ,  (in 
the example, p x  = 0.52 L,, p v  = 0.53 L y ) .  We then rotate cI around p of an angle .z to 
obtain czt. The choice of the pivot is the essential Monte Carlo element of the algorithm. 

The two configurations CI and c2 are then superposed as shown in figure l(c), where 
they form clusters of overlapping spherest. Two types of clusters are possible: ‘even’ 
clusters, made up of an equal number of spheres in CI and c2, and ‘odd’ clusters, in which 

t Periodic boundary conditions and the possible proximity of the cluster to the pivot have to be treated carefully. 

t All the el~sters in figure I (c )  can be determined in a. total of O(N) operations. 
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the numbers differ. In figure I(c), for example, the cluster ‘II’ is even, while cluster ‘I’ is 
odd. 

Generally, clusters appear in pairs (such as I and IV), with the possible exception of a 
single ‘even’ cluster which is symmetric around the pivot (In). 

It is now easily seen that we may ‘flip’ the clusters, i.e. interchange between CI and ca 
the spheres belonging to a cluster. We are interested in performing a canonical simulation 
in which the individual numbers of spheres, both of CI and cz, have to remain unchanged. 
We therefore choose to perform such flips for individual even clusters, or for pairs of odd 
clusters, such as I and N. The result of one such cluster flip (of clusters I and N) is shown 
in figure I(d).  Finally, we restrict our attention back to the updated configuration, 4 in the 
original simulation box. By inspection of figure I(e), which shows ci. we see that picking 
p and flipping clusters I and N has achieved a non-local Monte Carlo move: spheres 8 
and 9 were moved from the lower left corner to the upper right one, and the sphere 6 from 
the upper right comer to the lower left one. 

It should be evident that-given an arbitrary pivot point-the flip satisfies the detailed 
balance condition, and constitutes a viable Monte Carlo move. To see this one simply needs 
to consider the ‘reverse’ move (from figure l(e) back to figure ] (a)) ,  which has exactly the 
same probability of occurring as the original one. 

Applying the same argument as above to an even cluster (such as V in figure I(c)), 
we notice that small even clusters generate only local moves.’ Due to the limited benefits 
of worrying about (small), even clusters, we usually exclude them from our considerations. 
Many generalizations are possible: it is evident that the spheres can have different radii, 
etc; a potential can be taken into account in the usual way, by calculating the Boltzmann 
weights of the proposed flip and the reverse one; furthermore, the angle of the rotation 
around the pivot can be chosen at will. This only introduces some effects far from the 
pivot, which can be eliminated. 

The simple algorithm which has just been described works perfectly well. At small 
density, the combined system of c1 and cz breaks up into a large number of small clusters, 
which can be flipped independently. At higher density (i.e. above the percolation threshold 
of this combined system), there is a single percolating cluster (which it is useless to flip), and 
an algebraically decaying distribution of small clusters [I I]. Just,% in the Swendsen-Wang 
algorithm, there is a ‘magical’ point, the percolation threshold (which, for the king model, 
corresponds to the Curie temperature [ 121). At this point, the behaviour of the algorithm 
is optimal. In our case, the ‘magical point’ is the percolation threshold of the system of 
superposed configurations, which unfortunately lacks physical interest. In two dimensions, 
we find this percolation threshold to be situated at a density of p - 0.62, definitely lower 
than the densities in which we are interested (as usual 181, the density is defined as the ratio of 
the number of spheres and the volume of the simulation box, p = N /  V ,  normalized to 2 1 d  
for the most compact state; in these units, the transition takes place around p % 0.9 [5, IO]). 
Around the percolation threshold, the algorithm decorrelates the whole system by flipping 
a few large clusters, as in the Wolff algorithm [2]. 

Close to the liquid-solid transition in the two-dimensional system, i.e. much above 
the percolation point, it is particularly difficult to find a sufficient number of small odd 
clusters, which generate the non-local moves. It is difficult to find odd clusters, but one 
rather often encounters configurations which almost constitute odd clusters, such as the ones 
presented in figure 2. which are kept from flipping by a few weak ‘links’. We now present 
a stochastically correct trick which has allowed us to break up a large number of these weak 
links. 

For fixed but arbitrary E, we define an €-cluster as a set of spheres which may have an 
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Figure 2. We present a trick which allows us to Rip not only clusters (as in figure I). but also 
.-cl"ste~. 

arbitrary number of e-links, i.e. links between a disc of the set and a disc of the boundary 
(in a different box), larger than 2 x r - E  (so that the overlap between the spheres is smaller 
than E). In addition to having <-links, the e-cluster itself is held together by links which 
are not e-links, i.e. which are shorter than 2 x r - e. 

After isolating an <-cluster, we 'freeze' the boundary, and perform a certain fixed 
number of nlOc local Monte Carlo moves exclusively of the spheres in the <-cluster (without 
destroying it). Each time the number of e-links falls to zero, we have obtained a true cluster, 
which we flip. It is easily shown that this exotic 'dynamic of <-clusters' satisfies detailed 
balance, since we make sure that at each step both the initial and the final configuration are 
<-clusters. 

We have programmed the complete algorithm sketched in this paper. For small systems 
(up to 14 spheres), we performed extremely long runs both of a standard MC algorithm 
and of the present one. We find identical probability distributions, e.g. for the orientational 
order parameter [I31 to a precision of 0.1%. Thus, there is very little room for doubt 
about the correctness of the present algorithm, and for programming errors in our actual 
implementation. 

It is easily understood that, at high density, the main workload of the algorithm consists 
in the determination of the percolating cluster. Since we never actually 'flip' this cluster, 
most of the effort is thus spent in finding out what one does not want to d e a  frustrating 
way of using CPU time. Only after discarding the percolating cluster do we have a chance of 
finding small odd clusters. A moment's thought suffices to understand that there is a faster 
way to find the small odd clusters. Consider the cluster IV in figure l(c): it is evident that 
the non-local move can only be performed under the condition that, locally, it is possible 
to replace sphere 6 by two other spheres. Whether there is enough space at all in a given 
neighbourhood to replace n spheres by n + 1 can (for small n = 0, I ,  2) be decided by a 
local analysis which, in addition, is independent of the pivot (this remark is pertinent to 
clusters and e-clusters). An improved algorithm of the kind presented in this paper thus first 
isolates the loci at which n spheres may be replaced by n + I (for small n = 0, I ,  2). Once 
this analysis is done, one chooses randomly pivots, and then does the-now trivial+luster 
search, in regions which have survived the screening stage. Since the local analysis just 
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described can be reused a large number of  times (and updated, once we have flipped a 
cluster, or +cluster), the cluster search is much simplified. The final algorithm is thus quite 
efficient in generating non-local moves. 

Finally, let us stress that the method presented in this paper is very general, and may 
be applied to a large number of systems. The specific application to the hard-sphere liquid 
stands out as prototypical, and we hope that the algorithm will be helpful in elucidating the 
order of the transition, in  the measure of correlation functions, etc. Work along these lines 
is in progress. 

We acknowledge a very helpful discussion with D M a x .  
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